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The theory of n-electronic structure is presented for molecules of organic cumulenes C,H 4 which 
have two perpendicular subsystems of n-AO. Elementary considerations from simple MO theory 
show stability of planar D2h conformations for cumulenes with an even number of carbon atoms and 
of turned O 2 a conformations with odd number of carbon atoms. The lowest electronic configuration 
of a cumulene molecule in its unstable conformation has a multiplet structure with states 3.42, 1Bx, 1/11, 
and 1B z for even cumulenes with symmetry Dza and states 3A,, 1A,, 1Ao, and 1A'g for odd cumulenes with 
symmetry D2h. When electronic interaction is taken into account, the lowest states are 3A2, 1B1, resp. 
3A,, 1/1 u. In approximations of zero differential overlap and equivalence of inner and outer n-AO 
energy ofcumulene molecule in the states with closed shell 1A 1, IA9 and with open shell 1B1,1Auis possible 
to divide on energies of subsystems and their electronic interaction energy. The later does not depend 
on MO coefficients. Useful formulae are given for calculation of torsion barriers of end-groups in 
cumulenes. In this paper barriers are considered in two extreme approximations - -  with localized and 
Hfickel orbitals. With the first ones barriers do not depend on chain length and are equal to ethylene 
barrier. When Htickel orbitals are used, barriers are inversely proportional to chain length and approach 
zero with increasing n. The true state of electrons in chains is some-where between these two extreme 
c a s e s ,  

Die ~-Elektronenstruktur ftir Cumulene des Typs CnH 4 mit zwei aufeinander senkrecht stehenden 
~-Elektronensystemen wird berechnet. Die einfache MO-Theorie ergibt, dab gradzahlige C-Ketten 
im energie~irmsten Zustand planare Struktur (D2h) und ungradzahlige eine Struktur mit verdrehten 
H-Atomen besitzen. Die Multiplettstruktur in den um 90 ~ verdrehten Konformationen sind bei der 
gradzahligen Kette (jetzt D2a ) 3A2, 1B1, tA 1 und 1B 2 und bei der ungradzahligen (D2h) 3Au, 1Au, 1A o 
und 1A'g, wobei die ersten beiden Terme jeweils tiefer als die letzten beiden liegen. Macht man die Vor- 
aussetzung, dab zero differential overlap gilt und die Randzustgnde iiquivalent den inneren Zust~inden 
sind, l~iBt sich die Energie bei Singulett-Zust~inden in diejenige der Untersysteme und eine Wechsel- 
wirkungsenergie zerlegen, wobei letztere nicht mehr yon den MO-Koeffizienten abh5ngt. Formeln 
zur Berechnung der Rotationsbarrieren werden ffir zwei Grenzfglle angegeben: lokalisierte und 
Hfickelorbitale. Bei ersterer h~ingt die Schwelle nicht von der Kettenl~inge ab und ist gleich der beim 
~thylen, bei letzterer ist sic umgekehrt proportional zur Zahl der C-Atome. 

Les 6tats singulets les plus bas des cumul6nes organiques C,H 4 en conformation plane D2h ou 
tourn6e D2a sonst 6tudi6s en tenant compte de l'interaction 61ectronique. Seule l'interaction de con- 
figuration entre 6tats d6g6n6r6s est consid6r6e. Darts l 'approximation du recouvrement diff6rentiel 
nul et de l'6quivalence de toutes les orbitals p du carbone les 6nergies de ces 6tats (1A 1 ou 1A u pour n 
pair et 1B 1 ou 1A o pour n impair) sont s6parables en somme des 6nergies de deux syst6mes = isol6s et 
de leur 6nergie d'interaction qui ne d6pend pas des orbitales mol6culaires occup6es. On est ainsi 
conduit/l  des expressions commodes pour l'6valuation des bari6res de rotation interne dans les cumu- 
16nes. En utilisant des orbitales mol6culaires localis6es on obtient des barri6res constantes, 6gales 
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la barri~res de l'6thyl6ne, pour tousles cumul6nes. Avec des orbitales de Hfickel les barri6res sont 
inversement proportionnelles/L la longueur de la cha~ne et tendent ~t s'annuler lorsque cette longueur 
augmente ind6finiment. La r6alit6 est sans doute entre ces deux 9ase extremes. 

Cumulene molecules have the general formula I and contain a linear chain 
of n carbon atoms. The inner n -  2 atoms are characterized by diagonal hybri- 
dization sp and are in valence state didi rex hr. Hybridization of end-C-atoms should 
be close to trigonal s p2, and these a toms can be in valence states tr tr trrcx or tr tr t rn  r 

Even cumulenes (EC) are known to be planar 1 (symmetryDah in case of equal Ri). 
In odd cumulenes (OC) the two end-gr6ups are perpendicular to one another 
(symmetry D:d in case of equal R~). Both facts are in accordance with VB-theory. 

RI R3 

R2 I " R4  

The ease of cis-trans isomerization for the EC's or of stereoisomerization for 
the OC's  is determined first of all by the barrier height of internal rotation of the 
CH2 group in unsubstituted cumulenes, for substituents of different end-groups 
are moved away from each other in space and the influence of their interaction 
on the activation energy of the isomerization reaction should be small, partic- 
ularly for large n. 

Rotat ion of one of the C H  2 groups by 180 ~ returns the cumulene molecule 
to its initial state. It is a natural  suggestion that the barrier height is determined 
by the energy of such a molecular conformation in which one of the CH 2 groups 
is turned by 90 ~ in comparis ion with the most  stable conformation. In the follow- 
ing under "barrier  height" we shall always imply the difference between energies 
of the lowest singlet states of  the molecular conformations with symmetry D 2 h and 
D2a. The reason for the choice of both  singlet states will be made clear later. 

The barriers V in cumulenes were considered theoretically in the papers 
[3--7] .  Dunitz and Orgel [4], Fischer [3], Shustorovich [5], and Popov [6] 
used a simple Hfickel method which leads to the conclusion that with an increase 
of the number  of C a toms the barrier tends to zero: 

lim V, = 0.  (1) 
n--~ 0o 

Popov  [6] has shown analytically that  within the frame of the Hiickel method 
the result Vo~ ~= 0 is obtained if alternation of Coulomb integrals is introduced. 
Hoffmann [7] studied cumulenes by the extended Hfickel method [8]. He also 
gave asymptotics (1), but the change of V with n was found to be alternating: 
v2 > IV31 < v4 > 11151 < v6 > . . . .  In the Hiickel approximat ion we have a smooth 
dependence of V, upon n. Borden [9] calculated the ground and excited states 
of allene Cal l  4 by the Pariser-Parr-Pople (PPP) method [10, 11] and the  con- 
figuration interaction method. 

In the present and following communicat ions we develop quite generally 
(at least enough for our purposes) the theory of the electronic structure of organic 
cumulenes. We discuss in detail its application for calculation of barrier and give 
the results for 2 _  n < 20 performed by the restricted Har t ree-Fock method in a 

1 Properties of cumulenes are discussed in reviews [1--3]. 
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semi-empirical approximation of the closed and open shell theory. Equations 
of the later theory used by us are given in the next paper 2. 

a-Bonds of cumulene chains have cylindrical symmetry and their energy does 
not depend upon the angle of rotation of the end-groups. Therefore if direct 
interaction of the substituents is neglected the barrier height is determined by the 
energy change of the re-electrons with the change of the molecular conformation. 

Cumulenes C ,H 4 have 2 n - 2  ~z-electrons. In accordance with the simple 
MO theory 2 n -  2 cumulene levels can contain either n -  1 bonding levels and 
equally many antibonding levels or n - 2 bonding and equally many antibonding 
levels plus 2 nonbonding levels. In the former 2 n -  2 ~-electrons occupy all 
n - 1 bonding levels; in the latter - -  all n - 2 bonding levels and the 2 remaining 
electrons occupy the two-fold degenerate nonbonding level. The first distribution 
is energetically more favorable than the second one. This is achieved for even n 
for planar conformations and for odd n for twisted conformation. This may be 
considered as a simple explanation of the known experimental fact [-13--16] 
that the stable conformation of the EC's is planar, but that of the OC's is twisted 
with perpendicular arrangement of planes of the end-groups. This very interesting 
propertyof  the cumulenes was first explaned by van't Hoff [17] using the tetra- 
hedral model of the carbon atom. 

Let us choose the coordinate system in a way so that in the conformation 
Dzh ~-AO's of the subsystems with n AO's are directed along x-axis and with 
n - 2 AO's - -  along y-axis. The z-axis passes through the C atoms. Conformation 
D2a is formed by a rotation of one of the end-AO's by 90 ~ In this case the number 
of AO's which are directed along the x- and y-axis equals n -  1 in both cases. 

In the conformation D2h nx-states have symmetry b2o and bau , and ny-states 
- -  bEu and b3o. In the conformation D2a all n-MO transform according to the 
irreducible representation e. Therefore in this conformation the frontier MO (pair 
of nonbonding orbitals) is degenerated by symmetry. Accidental degeneration of 
the frontier MO's in the conformation D2h remains in the P P P  method also, 
for in this case zero differential overlap approximation is used. It is removed by 
alternation of bond lengths. 

The lowest electronic configuration of the cumulene molecule in its unstable 
conformation has a multiplet structure with states 3Az, 1B1, 1A1, and 1B 2 for EC 
and aAu, ~Au, ~A o, and 1A'g for OC. We shall see later that when electronic inter- 
action is accounted for the lowest states are 3A2, 1B1, resp. 3A,, 1/1,. The states 
1A1, 1B2, resp. lAg, ~A'g correspond to electron transfer between the perpendicular 
x- and y-subsystems of rc-AO. The molecule in its stable conformation, which is 
1/10 for EC and 1A 1 for OC, has a closed shell. The degeneration of the frontier 
n-MO's is removed for inorganic cumulenes with alternating atoms of different 
electronegativity. To a smaller degree the same is true if the difference in the 
hybridization between the parameters of inner and outer C atoms is taken into 
account. But even in this case the lowest singlet state may be IAu if the orbital 
energy splitting does not exceed the splitting of even and odd states. 

2 It contains also all basic numerical results as well as discussions of the following: asymptotic 
behaviour of the barrier, origin of non-zero barrier height found by us for infinite cumulene chain 
with all C = C  bond lengths assumed .equal, contradictions between simple and extended H/ickel 
methods in the prediction of barrier behaviour with increasing chain length. Some results of the pre- 
sent investigations are also briefly discussed in [12]. 
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In the following we shall neglect the difference in hybridization between outer 
and inner C atoms. This approximat ion is sufficiently good because the integrals 
for sp 2 and sp states are almost equal [18]. 

Let us the x- and y -MO's  in the conformation D2h write down as a linear 
combinat ion of the rc-AO's x~ and y~ 3: 

q'~ = Z c ~ ,  ~o'~ = Z C;~y~. 
v v 

The summation is extended over all AO's  of the chain. In the same manner  it is 
possible to set up the components  of the degenerate pairs of the MO's  in the 
conformation Dzd. 

Let a + be the creation operator  for an electron i of orbital state go~ and spin 
state a, and if+ be the same for spin state ft. Degenerate orbital pairs of open shell 
will be denoted by the symbols k and k', and orbitals of closed shell by j and f .  
Then wave functions of states with closed shell 7 jc may be written as 

7t~(~A~, ~Ao)=_ ~ ,  

7t~= l-[ a-j + a]. ~[ -dr a]., 10>, 
j, J 

where IO) is the vacuum state. 
Wave functions of states with open 

~e~ 3A.)= 

}P~ 1Au)= 

~~ 1Ao) = 

~P~ 1A'o) -= 

shell 7 ~~ will be written as follows: 

~22(- +-+ a~ a~ + ak, ak ) 7 j , 

~ (a;, a; - + -+ - ak, ak ) ~e , 

- ak, ak,)  7 '  , 

~ 2  --+ + c (-a + a + + ak, ak,)  , e  . 

For  these states the z-component  of the total spin M s is 0. Two other components 
of the triplet state 3,4 2 or 3A, with M s = ___ 1 are described by the functions 

+ 7  jC and - + - + 7  jc. a~, ak ak, a k 

Let us introduce the usual notations: 

dz ,  
*d 

Ki j ~ _ ,  , 1 = Cpi q)j ~oiUpjd'cldZ2.  
J / ' 12  

Then the energy of states with closed shell will be: 

gc(1A1, 1Ag)= n Z Hj-[- 2 Z Hj "-t- Z (2Jjxj2- Kjlj2) 
j J, JlJ2 

+ ~ (4Jj,j~ - 2Kj1j~ ) + ~ (2Jj~j~- Kjaj~ ) + E ....  , 
Jl J~ Jl J~ 

3 The chain of AO's y~ will be denoted by primed symbols. 



Torsion Barriers of End-Groups in Cumulenes. I 27 

where E ....  is the core total energy. If we denote 

E 1 = U § H k d- H k, -[- 2 (2Jjk -- Kjk  d- 2Jjk, -- Kjk,  ) 
J 

+ • (2Jj, k -- Kj,k + 2Jj, k , -  Kj,  k,), 
j, 

where E c means an expression which has the same structure as U(IA1,  1Ao) above, 
the sums being taken over the closed shells only, the energy of the states with 

open shell are: E~ 3A,) = E1 + Jkk' -- Kk,, , 

E~ aA,) = E1 + Jkk' + Kkk ' ,  

1 (Jkk + Jk'k') -- Kkk ' ,  E~ 1Ao) = E 1 + 

1 j 
E~ 1A' o) = E1 + ~ ( kk + Jk'k') + Kkg'. 

Usually 1 

holds. This means that among the lower singlet states the lowest are 1B 1 and 1A,. 
Reducing the MO's  to AO's the integrals over the AO's  

(~2J #v') = ~ x*(1) x*(2) 1 xa(1 ) y~(2) dT 1 KT 2 
J r 1 2  

will have to be calculated. Zero differential overlap 

will be used in this context. 
Core integrals Hn~ with/~ + v will be accounted for only in case ofneighbouring 

atoms and renamed fln~ (finn - 0). Integrals between AO's  nx and ny H,~, are zero 
for symmetry reasons. Integrals Hnn will be calculated in the Goepper t -Mayer  
and Sklar approximat ion [-19], neglecting penetration integrals 

Hnn = - In - ~, 7,~ - ~ 7n~' + 7nn, 

Hn' n' = - In - ~ 7n'~ - ~ 7n' ~' + Ynn " 
v v" 

Here I n is ionization potential of n-electron in the corresponding valence state 
and in the outer field of neighbouring neutral atoms. It  is obvious that I n, = I n 
as well as 7n'n' = 7nn" The summation runs over all AO nx resp. ny. 

Let us introduce the following notations for density matrix elements in AO 
representation: 

Pn~ = ~ CnjC~j, o - -  C n  k C v k  , T __ c o c Pn~ - Pn~ - 2Pn~ + Pn~, 
J 

and analogous expressions for the primed symbols. For  the states with closed 
o shell Pu~ is equal to zero. 

Using these notations and under the assumption of the approximations men- 
tioned above we obtain 

Z JJk = Z P~nP~ 7n~, 
j nv 

Z K j k =  Z P~*P~ 7,~, 
j nv 

o o" 

n ' v  
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In the zero differential overlap approximat ion all exchange integrals of the 
type Ki ;  are zero. When the necessary substitutions are done we get the following 
expressions for the energy of states with closed shell: 

EC(aA1, 1Ao) = Z (7w - Iv) P~v + Z (7r162 - Iv,) pT; 
v v "  

- -P,~v P /~  - P;~ - (p/T)2 + p/T flu v 
.v[L 2 LL(F1 T, pT, 1 1 } 

+ E (PTi p r . _  pT;__pf.)7ur 
I~V t 

Further simplifications will follow if we take into account that for alternant 
hydrocarbons it holds that  PT v = pT~ = 1 [20]. This is also true for the SCF method 
in the P P P  approximation,  which is assumed, if the ionization potentials and 
integrals are put equal for all a toms C [11, 24] including the end atoms: 

I,  =- Iv ' = I  , 7vv---- 7 v ' , ' -  7. 

This assumption seems to be not far from the truth for organic cumulenes. 
If the alternant properties of cumulenes are taken into acount  then the energy 

of the states with closed shell can be divided up as follows: 

EC('A1, IAo) = E~ + E~ + Ein t + E . . . .  , 
where 

. f l . v -  ~-P~ 7.v , v . v -~- 7. v - v (2 a) 

r - -  - -  Ex - E (yv, v, Iv,)+ E P~v flu'v" 1 T' ~-? , ' v '  P~v 7u'v' , (2b) 
V '  . ' v '  

E i m = - ~ 7 . r  

The energy E~, represents the 7c-electron energy of a hypothetical compound 
with the same space structure as the corresponding cumulene with closed shell 
but having only one system of AO of type n x. The same is true for the energy E~. 
Ein t represents the energy of the static electron interaction of the two chains 
and does not depend upon the M O  coefficients. 

Analogous transformations for the states with open shell IB 1 and ~A u lead 
to the following result: 

E~ 1A.) = E ~ + E~, + Ein t + E . . . .  , 
where 

E~ = ~ (Tvv - I 0  + T _ o (3 a) P~vfluv- i __ 7.v , ~ ?t,v p~r P~v 7. 
v . v  L 

Puv ft.'v" 1 f l pT,'~ 2 1 2 \ 2  ,v} 7,.v. 7,. �9 0b)  
v '  /L' v '  

As we see, division into two chains is possible also in this case, but now each 
chain is in a doublet state and has an open shell structure as in organic free radicals. 
The theory of the states with open shell will be given in the next paper. 

However, for the open shell states 1A 1, 1B 2, lAg, and XA'g division of the re- 
electron system in two subsystems is not possible inspite of the fact that rule 
p r  v = p r '  is satisfied. 
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The energy Ein t is not the same for different cumulene conformations. A simple 

calculation yields Eint(D2 d) - -  Eint (D2 h) = - -  7~co' 

where c~ and co are the indices of the end-atoms. 
Let us note one incorrectness of the Goeppert-Mayer and Sklar approximation 

[19] when one calculates the interaction energy of positive core charges E o. 

In fact, if we try to find E o in this approximation by the method of Dewar and 

Gleicher [22] : E o  = ~ '  7~,~ 

/1<7 

where the summation is taken over all AO's of the two chains, one gets different 
interaction energies for different conformations: 

ED(D2d) --  ED(D2h) = 7~o' -- 7~o~. 

However on physical grounds the interaction energies of positive charges in 
different core conformations of cumulenes can not be different. These differences 
are small, of course, and decrease rapidly with increasing chain length. 

If one accepts the differences mentioned then the barrier heights V may be 
found from the relation: 

V = Ex(O2d)  + E , (D2n)  - E x ( D : h )  - E , (O2h)  - y ,~ , .  (4) 

The last term will then result from compensations of changes of Ei, t and E .... . 
If, on the other hand, one takes the same core energies E .... for both con- 

formations then 
V = Ex (D2d  ) + Ey(D2a) - Ex(D2h)  - Ey(D2h) - 7~o,' �9 (5) 

Values of V by (4) and (5) are almost identical especially for large n. 
As we see from Eq. (4) and (5) the barrier height is determined first of all by 

energies of the re-electrons subsystems which may be calculated from formulae 
(2a, b) and (3a, b). The results of computations of the barriers based on SCF 
theory will be given in the next communication. 

In concluding this paper we restrict ourselves by the estimation of barriers 
in the case of two limiting assumptions about the density matrices. Let consider 
for the first the assumption of isolated bonds when the MO's of a chain with m 
atoms have following coefficients: 

C 2 / ~ -  1 j =  V (~'u j ''~- l~'u' m + I - j 
' 2 ' 

1 
C 2 . j  - l / ~  (~.j - ~.,m+ ~- i ) '  

The orbitals with the lowest j are filled first. In this approximation all elements of 
density matrices p r  and po  are equal zero except 

p T =  1 r , P/~,2u-i =-1 
and for odd rn 

o Pm+l m+l  =1  
h o l d s .  2 ' 2 

Let put the exchange integral fl = - 3 . 5 6 9  eV. This value follows from ex- 
ponential dependence of fl upon R [23] for R = 1.31 A [13, 14, 24]. Two-center 
integrals yu~ are calculated by the formulae due to Mataga-Nishimoto [25, 26] 
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or Ohno [27]. One-center integrals 7.~ are estimated by Pariser's suggestion [28] 
from the ionization potential and the electron affinity of the C atom in the valence 
state sp from Hinze and Jaff6 [-18]. Detailed information about  parameters used 
will be given in the next paper. 

Let all flu,r+ 1 and 7r, u+ 1 being equal. One gets 
m--1  

Z P/~,.+ I = entier (m/2), (p~.)2 = 1, 
, u= l  # = 1  
m - 1  

( p r +  1)2 = e n t i e r  (m/2), 
r = l  

where entier (E) is the greatest integer which is smaller than E 4. 
Finally, we find that with the approximations discussed the barrier heights 

which are determined by formula (4) are the same for all cumulenes and are equal to 

1 1 
Vl~ - 2fir.u+1 + ~ - ~ r , , + l -  ~ - 7 , , -  

With the values of the parameters as mentioned above V'~176 4.353 eV resp. 
V '~ = 5.497 eV depending on which 7rv integrals are used - -  Mataga-Nishimoto 
or Ohno. 

This approximation, naturally, is merely a quantitative expression of the 
primitive calculation of the effective ~z-bonds number in a given cumulene con- 
formation mentioned at the beginning. The number of atoms on which the 
electrons are localized in the unstable conformation is not important  at all. It is 
evident that the energy necessary for breaking one effective n-bond is equal to 
the barrier height in ethylene the MO coefficients of which are completely deter- 
mined by symmetry conditions. In fact, when values of Ex(x) calculated from the 
ethylene density matrix are putted to formula (4) one gets the above given numerical 
values of V ~~176 

On the other hand it is of interest to consider the case of Htickel orbitals for a 
chain with all bond lengths equal. These orbitals are expressed analytically as: 

C r j=  ~ m - - - - ~  sin PJn 
m + l  

Let us take into account the integrals fir. and 7r. only for neighbouring atoms 
and use following relations: 

"cosec rc 1 
,,-1 2 m + 2  
~" P~u+I--=Qm =, 

1 r=~ ctg 2 m + 2  

(P~,u+I) - - -  + 
u =1 m + 1 [(m - 1)/m 

(p~.)2 = 2 
~=a m + l  

/rl--1 
2 O 2 (P~,u+l) = 0. 

# = 1  

4 Function entier (E) is taken from syntax of algorithmic language Algol 60 [-29]. 

m even 

rn odd 

m even 

m odd 

m odd 
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It  is poss ib le  then to show ana ly t ica l ly  tha t  ba r r ie r s  ca lcu la ted  by  fo rmula  (4) 
t end  a sympto t i ca l l y  to  zero  with  increas ing n in accord  with  s imple  [ 3 - - 6 ]  and  
ex tended  [7]  Ht ickel  me thods .  The i r  numer ica l  values  a n d  even thei r  signs d e p e n d  
u p o n  the choice of  pa ramete rs .  W i t h  a r easonab le  choice the ba r r i e r  heights  a re  
negat ive  for O C  a n d  pos i t ive  for EC. W i t h  the  pa r a me te r s  ind ica ted  above  we 
ca lcu la ted  the bar r ie r s  of  the  cumulenes  for 2 _< n < 20 on  Ht ickel  orbi ta ls ,  t ak ing  
account  of  all in tegrals  ~,~. C o m p u t a t i o n s  were pe r fo rmed  on a Soviet  c o m p u t e r  
M-20  of  the Ins t i tu te  of  Cyberne t ics  (Academy of  Sciences of  the  Ukra ine ,  Kiev)  
by  a series o f p r o g r a m m e s  M N ,  PPP-1 ,  and  P P P - 2  descr ibed  in deta i l  and  presented  
in Algol  60 in our  b o o k  [30]. The  self-consistency in p r o g r a m m s  P P P - 1  and  
P P P - 2  were b locked  dur ing  these compu ta t ions .  Resul ts  which will be given to-  
gether  wi th  o the r  numer ica l  ma te r i a l  in the  next  c o m m u n i c a t i o n  show tha t  the  
abso lu te  values of  ba r r ie r s  regular ly  decrease  with increas ing  n and  cor re la te  
l inear ly  wi th  n -  1. F o r  6 _< n _< 20 the fol lowing equa t ions  and  cor re la t ion  coefficients 
r are  ob t a ined :  

7u~ by M a t a g a - N i s h i m o t o  

[V,I = 0.0057 (_+ 0.0004) + 6.725 ( +  0.004) 1 ,  r = 0.999998 _+ 0.000001 
n 

7u~ by  O h n o  

IV,[ = 0.0066 ( _  0.0055) + 9.663 (_+ 0.059) 1 ,  r = 0.9998 ___ 0.0001. 
n 

The  b racke t s  in these equa t ions  con ta in  the der ivat ions .  L inear  cor re la t ion  equa-  
t ions show tha t  the  ba r r i e r  c o m p u t e d  f rom n o n - S C F  Hfickel  orb i ta l s  t end  to  
zero when n ~  oo. 

Because the  t rue  s ta te  of  e lect rons  in chains  is somewhere  be tween these 
two ex t reme cases [11] one  m a y  except  tha t  the  ba r r i e r  heights  do  decrease  with 
increas ing cumulene  cha in  bu t  no t  so r ap id ly  as n -  1 and  poss ib ly  tend  to  a non-  
zero l imit  for an  infinite chain.  The  next  c o m m u n i c a t i o n  will be devo ted  to  de- 
pendence  u p o n  length  of  bar r ie rs  c o m p u t e d  f rom S C F  orbi tals .  
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