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Torsion Barriers of End-Groups in Cumulenes

I. General Consideration
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The theory of n-electronic structure is presented for molecules of organic cumulenes C,H, which
have two perpendicular subsystems of n-AO. Elementary considerations from simple MO theory
show stability of planar D,, conformations for cumulenes with an even number of carbon atoms and
of turned D, , conformations — with odd number of carbon atoms. The lowest electronic configuration
of a cumulene molecule in its unstable conformation has a multiplet structure with states °4,, *B,, 14,
and ' B, for even cumulenes with symmetry D, , and states 4,, '4,, '4,, and '] for odd cumulenes with
symmetry D,,. When electronic interaction is taken into account, the lowest states are 34,, 'B,, resp.
34,, '4,. In approximations of zero differential overlap and equivalence of inner and outer 7-AQ
energy of cumulene molecule in the states with closed shell '4,, *A, and with open shell ' B, 24, is possible
to divide on energies of subsystems and their electronic interaction energy. The later does not depend
on MO coefficients. Useful formulae are given for calculation of torsion barriers of end-groups in
cumulenes. In this paper barriers are considered in two extreme approximations — with localized and
Hiickel orbitals. With the first ones barriers do not depend on chain length and are equal to ethylene
barrier. When Hiickel orbitals are used, barriers are inversely proportional to chain length and approach
zero with increasing n. The true state of electrons in chains is some-where between these two extreme
cases.

Die n-Elektronenstruktur fiir Cumulene des Typs C,H, mit zwei aufeinander senkrecht stehenden
n-Elektronensystemen wird berechnet. Die einfache MO-Theorie ergibt, daB gradzahlige C-Ketten
im energiermsten Zustand planare Struktur (D,,) und ungradzahlige eine Struktur mit verdrehten
H-Atomen besitzen. Die Multiplettstruktur in den um 90° verdrehten Konformationen sind bei der
gradzahligen Kette (jetzt D,,;) *4,, 'B,, '4, und 'B, und bei der ungradzahligen (D,) °4,, '4,, 4,
und '4;, wobei die ersten beiden Terme jeweils tiefer als die letzten beiden liegen. Macht man die Vor-
aussetzung, daB zero differential overlap gilt und die Randzustande dquivalent den inneren Zustinden
sind, 148t sich die Energie bei Singulett-Zustdnden in diejenige der Untersysteme und eine Wechsel-
wirkungsenergie zerlegen, wobei letztere nicht mehr von den MO-Koeffizienten abhéingt. Formeln
zur Berechnung der Rotationsbarrieren werden fiir zwei Grenzfille angegeben: lokalisierte und
Hiickelorbitale. Bei ersterer héingt die Schwelle nicht von der Kettenlinge ab und ist gleich der beim
Athylen, bei letzterer ist sic umgekehrt proportional zur Zahl der C-Atome.

Les états singulets les plus bas des cumulénes organiques C,H, en conformation plane D,, ou
tournée D, sonst étudiés en tenant compte de I'interaction électronique. Seule linteraction de con-
figuration entre états dégénérés est considérée. Dans I'approximation du recouvrement différentiel
nul et de I'équivalence de toutes les orbitals p du carbone les énergies de ces états (14, ou *4, pour n
pair et !B, ou 14, pour n impair) sont séparables en somme des énergies de deux systémes n isolés et
de leur énergie d’interaction qui ne dépend pas des orbitales moléculaires occupées. On est ainsi
conduit & des expressions commodes pour ’évaluation des bariéres de rotation interne dans les cumu-
I¢nes. En utilisant des orbitales moléculaires localisées on obtient des barriéres constantes, égales
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a la barrieéres de I'éthyléne, pour tous les cumulénes. Avec des orbitales de Hiickel les barriéres sont
inversement proportionnelles & la longueur de la chaine et tendent 4 s’annuler lorsque cette longueur
augmente indéfiniment. La réalité est sans doute entre ces deux ¢ase extrémes.

Cumulene molecules have the general formula I and contain a linear chain
of n carbon atoms. The inner n— 2 atoms are characterized by diagonal hybri-
dization sp and are in valence state didiz, 7. Hybridization of end-C-atoms should
beclose to trigonal s p?, and these atoms can be in valence states tr tr trm, Or tr tr tr,,.
Even cumulenes (EC) are known to be planar ! (symmetry D,, in case of equal R,).
In odd cumulenes (OC) the two end-groups are perpendicular to one another
(symmetry D,, in case of equal R,). Both facts are in accordance with VB-theory.

R R
1\ / 3
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RZ/ N\g

1 4

The ease of cis-trans isomerization for the EC’s or of stereoisomerization for
the OC’s is determined first of all by the barrier height of internal rotation of the
CH, group in unsubstituted cumulenes, for substituents of different end-groups
are moved away from each other in space and the influence of their interaction
on the activation energy of the isomerization reaction should be small, partic-
ularly for large n.

Rotation of one of the CH, groups by 180° returns the cumulene molecule
to its initial state. It is a natural suggestion that the barrier height is determined
by the energy of such a molecular conformation in which one of the CH, groups
is turned by 90° in comparision with the most stable conformation. In the follow-
ing under “barrier height” we shall always imply the difference between energies
of the lowest singlet states of the molecular conformations with symmetry D, , and
D,,. The reason for the choice of both singlet states will be made clear later.

The barriers V in cumulenes were considered theoretically in the papers
[3—7]. Dunitz and Orgel [4], Fischer [3], Shustorovich [5], and Popov [6]
used a simple Hiickel method which leads to the conclusion that with an increase
of the number of C atoms the barrier tends to zero:

lim V,=0. 1

n—>ow

Popov [6] has shown analytically that within the frame of the Hiickel method
the result V_ &0 is obtained if alternation of Coulomb integrals is introduced.
Hoffmann [7] studied cumulenes by the extended Hiickel method [8]. He also
gave asymptotics (1), but the change of V with n was found to be alternating:
V,>|V;| < Vy>|Vs| < Vg >---. In the Hiickel approximation we have a smooth
dependence of V, upon n. Borden [9] calculated the ground and excited states
of allene C;H, by the Pariser-Parr-Pople (PPP) method [10, 117 and the con-
figuration interaction method.

In the present and following communications we develop quite generally
(at least enough for our purposes) the theory of the electronic structure of organic
cumulenes. We discuss in detail its application for calculation of barrier and give
the results for 2 £ n <20 performed by the restricted Hartree-Fock method in a

! Properties of cumulenes are discussed in reviews [1—3].
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semi-empirical approximation of the closed and open sheli theory. Equations
of the later theory used by us are given in the next paper?.

c-Bonds of cumulene chains have cylindrical symmetry and their energy does
not depend upon the angle of rotation of the end-groups. Therefore if direct
interaction of the substituents is neglected the barrier height is determined by the
energy change of the n-electrons with the change of the molecular conformation.

Cumulenes C,H, have 2n—2 m-electrons. In accordance with the simple
MO theory 2n — 2 cumulene levels can contain either n — 1 bonding levels and
equally many antibonding levels or n — 2 bonding and equally many antibonding
levels plus 2 nonbonding levels. In the former 2n— 2 n-electrons occupy all
n — 1 bonding levels; in the latter — all n — 2 bonding levels and the 2 remaining
electrons occupy the two-fold degenerate nonbonding level. The first distribution
is energetically more favorable than the second one. This is achieved for even n
for planar conformations and for odd a for twisted conformation. This may be
considered as a simple explanation of the known experimental fact [13—16]
that the stable conformation of the EC’s is planar, but that of the OC’s is twisted
with perpendicular arrangement of planes of the end-groups. This very interesting
propertyof the cumulenes was first explaned by van’t Hoff [17] using the tetra-
hedral model of the carbon atom.

Let us choose the coordinate system in a way so that in the conformation
D,, n-AO’s of the subsystems with n AO’s are directed along x-axis and with
n—2 AQ’s — along y-axis. The z-axis passes through the C atoms. Conformation
D, ,is formed by a rotation of one of the end-AQ’s by 90°. In this case the number
of AO’s which are directed along the x- and y-axis equals #— 1 in both cases.

In the conformation D, m.-states have symmetry b,, and b, and n -states
— b,, and b;,. In the conformation D,, all z-MO transform according to the
irreducible representation e. Therefore in this conformation the frontier MO (pair
of nonbonding orbitals) is degenerated by symmetry. Accidental degeneration of
the frontier MO’s in the conformation D,, remains in the PPP method also,
for in this case zero differential overlap approximation is used. It is removed by
alternation of bond lengths.

The lowest clectronic configuration of the cumulene molecule in its unstable
conformation has a multiplet structure with states °4,, B,, '4,, and 'B, for EC
and *4,, '4,, '4,, and 'A/ for OC. We shall see later that when electronic inter-
action is accounted for the lowest states are 34,, ‘B, resp. *4,, '4,. The states
'44, 'B,, resp. '4,, 'A; correspond to electron transfer between the perpendicular
x- and y-subsystems of 7-AO. The molecule in its stable conformation, which is
'A, for EC and 4, for OC, has a closed shell. The degeneration of the frontier
n-MOQ’s is removed for inorganic cumulenes with alternating atoms of different
electronegativity. To a smaller degree the same is true if the difference in the
hybridization between the parameters of inner and outer C atoms is taken into
account. But even in this case the lowest singlet state may be 4, if the orbital
energy splitting does not exceed the splitting of even and odd states.

% It contains also all basic numerical results as well as discussions of the following: asymptotic
behaviour of the barrier, origin of non-zero barrier height found by us for infinite cumulene chain
with all C=C bond lengths assumed .equal, contradictions between simple and extended Hiickel
methods in the prediction of barrier behaviour with increasing chain length. Some results of the pre-
sent investigations are also briefly discussed in [12].
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In the following we shall neglect the difference in hybridization between outer
and inner C atoms. This approximation is sufficiently good because the integrals
for sp? and sp states are almost equal [18].

Let us the x- and y-MO’s in the conformation D,, write down as a linear
combination of the 7-AO’s x, and y, *:

(pi'_“zcvixva (p::ZC;zyv

The summation is extended over all AO’s of the chain. In the same manner it is
possible to set up the components of the degenerate pairs of the MO’s in the
conformation D, ,.

Let a; be the creation operator for an electron i of orbital state ¢, and spin
state o, and a;" be the same for spin state f. Degenerate orbital pairs of open shell
will be denoted by the symbols k and k', and orbitals of closed shell by j and j'.
Then wave functions of states with closed shell ¥° may be written as

P('dy, '4,)=ve,
ve=11aj aj []a aj 10>,
j 7
where |0 is the vacuum state.
Wave functions of states with open shell ¥ will be written as follows:

1 _ _

VA, °A) = —= @ af +aia)¥Pe,
/2

1 —
P('By, 'A) = —= (@ oy —ai GO ¥°,
/2
R
/2
0 ’ 1 y - (4
Po('4,, '4) = 1_/—5(61; @ +aga) Y.

For these states the z-component of the total spin M is 0. Two other components
of the triplet state 4, or 34, with Mg= 41 are described by the functions

afaf V¢ and alal V.
Let us introduce the usual notations:

.
Hy= | gy H*" @y dx,

T0(1B27 lAg) = (C_l]:— al_: - a—l—:’ al:—’) we 5

-
— 1 —
Jij= QD?CD;FZ(Pi(deﬂdea

[ 1 _
K;;= Q’i*(l’f—‘“(!’i(/’jdﬁ dt, .
ris

Then the energy of states with closed shell will be:
Ef(Ay,'A)=2Y H;+ 2 Hy + 3 (2J;,;,— K, )
7 ~ L

J Jijz
-+ Z (4Jj1ji—2Kj1j'2)+ Z (2Jj,1j,2_—Kj,1j,2)+Ecore,
iz i

3 The chain of AO’s y, will be denoted by primed symbols.
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where E°*¢ is the core total energy. If we denote
E,=E°+H,+H, + 2(2 = K+ 2050 — Kjie)

+Z(2J Kje+2Jp0 —Kjw),

where E° means an expression Wthh has the same structure as E°('4,, '4,) above,
the sums being taken over the closed shells only, the energy of the states with

open shell are: E°CA,, 3A)=E, +Ju — Kup»
E°(*By,'"A,)=E{ + J + Kpe

1
E0(1B29 lAg) = E1 + —2"(Jkk +Jk’k’) - Kkk’ >

0 , 1
E°('4,, lAg) =E;+ T(Jkk + o) + Ky -

Usually 1
Ji; < 5 i+ ;)
holds. This means that among the lower singlet states the lowest are B, and *4,,.

Reducing the MO’s to AO’s the integrals over the AO’s
, 1
e )= [ 0510 ) )
12

will have to be calculated. Zero differential overlap

(%l | /,lV) = 5%1 5;“7(%% | ﬂll) = 5%1 5uv yuu
will be used in this context.

Core integrals H,, with p 4 v will be accounted for only in case of neighbouring
atoms and renamed B,, (8,, =0). Integrals between AO’s n, and =, H,, are zero
for symmetry reasons. Integrals I,, will be calculated in the Goeppert-Mayer
and Sklar approximation [19], neglecting penetration integrals

Huuz _Iu—zyuv _ZWV’ + Vs
Hy,=—-1,— Zyu’v_ ZW’V""W#'

Here I, is ionization potential of n-electron in the corresponding valence state
and in the outer field of neighbouring neutral atoms. It is obvious that I, =1,
as well as y,., = 7y,, - The summation runs over all AO =, resp. =,

Let us introduce the following notations for density matrix elements in AO
representation:

P,= Z C,;Cyjy Puy=0C,Cy, PT =2P,,+P,,,
J

and analogous expressions for the primed symbols. For the states with closed
shell P}, is equal to zero.

Using these notations and under the assumption of the approximations men-
tioned above we obtain

2 J]k Z P vv yuv H

ZKJk_ZanPOV’Vyv’
T = }: P2, P

uyuv
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In the zero differential overlap approximation all exchange integrals of the
type K;; are zero. When the necessary substitutions are done we get the following
expressions for the energy of states with closed shell:

Ec(lAla 1Ag): Z('yvv _Iv) P$v+ Z’(‘yv’v’ —Iv’) Pa

1 1
+ z {[7P\?; P‘Tu _P\?; - Z (P;Tv)z]yuv + vaﬂuv}
wy
| - o1 . .
+ Z, {[? PVTZ) P;Tu_PVT; - Z(P[Tv)z:l Y v +PZv ﬂu’v’}
By
+ Y (PL Pl —PL—PL)y,, .
wy’

Further simplifications will follow if we take into account that for alternant
hydrocarbons it holds that PY, = P, = 1 [20]. This is also true for the SCF method
in the PPP approximation, which is assumed, if the ionization potentials and
integrals are put equal for all atoms C [11, 24] including the end atoms:

IVEI\”EI’ PowEVwv =Y -
This assumption seems to be not far from the truth for organic cumulenes.

If the alternant properties of cumulenes are taken into acount then the energy
of the states with closed shell can be divided up as follows:

E°(*A4, 'A)) = ES + ES + Eyp + E&,
where

c 1 1 2

ExZZ(yvv_Iv)_I—ZI:vaﬁuv'—vz—yuv—<-2_PuTv> y;;v:|a (23)

v uv
. 1 1 .\

E; = Z (yv’v’ - Iv') + Z I:PuTv ﬁu’v’ — ? Yurv — (? P;Tv) yu’v’:l s (2b)

v v
Eint: - Z yuv’ .
uv’

The energy Ef, represents the n-electron energy of a hypothetical compound
with the same space structure as the corresponding cumulene with closed shell
but having only one system of AO of type n,. The same is true for the energy ES.
E,,, represents the energy of the static electron interaction of the two chains
and does not depend upon the MO coefficients.

Analogous transformations for the states with open shell 'B; and '4, lead
to the following result:

E°(*B,,’A,)=E},+ E}+ E,, + E*™,
where .

g 2 1\
E;:Z(yvv_lv)+Z[PJvﬁuv_?Yﬂv_(7PuTv> yuv_(jpyv> ’Yugl: (33)
v uv
0 T 1 1 oV 1,V
Ey=Z(YV’v'—Iv’)+ Z Puvﬁu’v’_i’yu’v’_ 5Puv 'Yu’v’— _5Puv 'yu'v" (3b)
o Pl

As we see, division into two chains is possible also in this case, but now each
chain isin a doublet state and has an open shell structure as in organic free radicals.
The theory of the states with open shell will be given in the next paper.

However, for the open shell states '4,, 'B,, '4,, and 'A4; division of the n-
electron system in two subsystems is not possible inspite of the fact that rule
PI =PT is satisfied.
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The energy E,,, is not the same for different cumulene conformations. A simple
calculation yields
y Ei(D20) = Eine(D2p) = — Vo

where o and w are the indices of the end-atoms.

Let us note one incorrectness of the Goeppert-Mayer and Sklar approximation
[19] when one calculates the interaction energy of positive core charges Ej,.
In fact, if we try to find Ej, in this approximation by the method of Dewar and
Gleicher [22]: Ep= Y 7

u<v
where the summation is taken over all AO’s of the two chains, one gets different
interaction energies for different conformations:

Ep(D;0) — Ep(D2p) = Vawr — Vaw -
However on physical grounds the interaction energies of positive charges in
different core conformations of cumulenes can not be different. These differences
are small, of course, and decrease rapidly with increasing chain length.

If one accepts the differences mentioned then the barrier heights V may be
found from the relation:

V=E(D;5)+E,Dy4) — E(D3p) — E;(D24) = V400 - (4)
The last term will then result from compensations of changes of E;, and E®.

If, on the other hand, one takes the same core energies E°* for both con-
formations then ,
V=E\(Dyg) + Ey(D3,) — E.(D31) — Ey(Dyp) — Vaor - &)
Values of V by (4) and (5) are almost identical especially for large n.

As we see from Eq. (4) and (5) the barrier height is determined first of all by
energies of the n-electrons subsystems which may be calculated from formulae
(2a,b) and (3a,b). The results of computations of the barriers based on SCF
theory will be given in the next communication.

In concluding this paper we restrict ourselves by the estimation of barriers
in the case of two limiting assumptions about the density matrices. Let consider
for the first the assumption of isolated bonds when the MO’s of a chain with m
atoms have following coefficients:

Oujt Opme1—
2 b

(5uj - 5u,m+ 1~j) .

C2u—1.j=

1
/2
The orbitals with the lowest j are filled first. In this approximation all elements of
density matrices PT and P° are equal zero except

PuTuEI’ PuT,2u~151

sz -

and for odd m
Pois mei =1
holds. 22
Let put the exchange integral f= —3.569 ¢V. This value follows from ex-
ponential dependence of § upon R [23] for R =1.31 A [13, 14, 24]. Two-center

integrals y,, are calculated by the formulae due to Mataga-Nishimoto [25, 26]
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or Ohno [27]. One-center integrals y, , are estimated by Pariser’s suggestion [28]
from the ionization potential and the electron affinity of the C atom in the valence
state sp from Hinze and Jaffé [18]. Detailed information about parameters used
will be given in the next paper.

Let all B, ,.1 and Yu,u+1 D€INg equal. One gets

Z T .+1 = entier (m/2), Z( D=1,

i (PT,, 1)* = entier (m2),

where entier (E) is the greatest integer which is smaller than E .
Finally, we find that with the approximations discussed the barrier heights
which are determined by formula (4) are the same for all cumulenes and are equal to

oc 1 1
ploc = _2ﬂﬂ,ﬂ+1 + 7’))#,#‘*'1_ ?yiuu'

With the values of the parameters as mentioned above V'°=4.353¢eV resp.
V' =5.497 eV depending on which y,, integrals are used — Mataga-Nishimoto
or Ohno.

This approximation, naturally, is merely a quantitative expression of the
primitive calculation of the effective z-bonds number in a given cumulene con-
formation mentioned at the beginning. The number of atoms on which the
electrons are localized in the unstable conformation is not important at all. It is
evident that the energy necessary for breaking one effective n-bond is equal to
the barrier height in ethylene the MO coefficients of which are completely deter-
mined by symmetry conditions. In fact, when values of E,,, calculated from the
ethylene density matrix are putted to formula (4) one gets the above given numerical
values of V',

On the other hand it is of interest to consider the case of Hiickel orbitals for a
chain with all bond lengths equal. These orbitals are expressed analytically as:

2 . ujm
C,;= |/ .
# m+1 st m+1

Let us take into account the integrals f,, and y,, only for neighbouring atoms
and use following relations:

m}_:I o cosec " — 1 m even
u—1 otg pr—— — m odd
S e I mo
Z (P2 = _2}_1 m odd

2 (P ye1)’ =

* Function entier (E) is taken from syntax of algorithmic language Algol 60 [29].
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It is possible then to show analytically that barriers calculated by formula (4)
tend asymptotically to zero with increasing n in accord with simple [3—6] and
extended [7] Hiickel methods. Their numerical values and even their signs depend
upon the choice of parameters. With a reasonable choice the barrier heights are
negative for OC and positive for EC. With the parameters indicated above we
calculated the barriers of the cumulenes for 2 £ n < 20 on Hiickel orbitals, taking
account of all integrals y,,. Computations were performed on a Soviet computer
M-20 of the Institute of Cybernetics (Academy of Sciences of the Ukraine, Kiev)
by a series of programmes MN, PPP-1, and PPP-2 described in detail and presented
in Algol 60 in our book [30]. The self-consistency in programms PPP-1 and
PPP-2 were blocked during these computations. Results which will be given to-
gether with other numerical material in the next communication show that the
absolute values of barriers regularly decrease with increasing »n and correlate
linearly withn~ 1. For6 < n < 20thefollowing equations and correlation coefficients
r are obtained:

7.y by Mataga-Nishimoto
[Val=0.0057 (+ 0.0004) + 6.725 (+ 0.004) % , 1=0.999998 + 0.000001
7., by Ohno

IV = 0.0066 (& 0.0055) + 9.663 (+ 0.059)

o T= 0.9998 + 0.0001 .

The brackets in these equations contain the derivations. Linear correlation equa-
tions show that the barrier computed from non-SCF Hiickel orbitals tend to
zero when n— 0.

Because the true state of electrons in chains is somewhere between these
two extreme cases [11] one may except that the barrier heights do decrease with
increasing cumulene chain but not so rapidly as n~! and possibly tend to a non-
zero limit for an infinite chain. The next communication will be devoted to de-
pendence upon length of barriers computed from SCF orbitals.
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